Test Process Data

Response Times in a Bayesian Marginal Modeling Framework (RR 18-02)

A new statistical model is proposed to study the effects of various testing conditions on a population of test takers. This flexible model allows for numerous effects to be considered simultaneously. A Bayesian approach is employed, taking prior information into consideration. An empirical example demonstrates the utility of the suggested model to test the influence of item presentation formats on the performance of test takers. This research could be of practical value in a potential transition of the Law School Admission Test (LSAT) from a paper-and-pencil format to a digital mode.

Request the full report

Additional reports in this collection

The Bayesian Covariance Structure Model for Testlets...

Standard item response theory (IRT) models have been extended with testlet effects to account for the nesting of items; these are well known as (Bayesian) testlet models or random effect models for testlets. The testlet modeling framework has several disadvantages. A sufficient number of testlet items are needed to estimate testlet effects, and a sufficient number of individuals are needed to estimate testlet variance. The prior for the testlet variance parameter can only represent a positive association among testlet items.

Modeling Multilevel Dependence Structures for Responses...

Bayesian covariance structure modeling (BCSM) offers a flexible approach to modeling complex interdependences that arise when gathering test-taker data through computerized testing. In addition to the scored responses, process data such as response times or action patterns are obtained. Data from different sources may be cross-correlated; furthermore, within each data source, blocks of correlated observations may form testlet structures. In previous reports, BCSM was limited to the assumption that all test takers are part of the same group.